Example of a beam grillage calculation according to different methods - Part 1
Example of a beam grillage calculation according to different methods
Comparison of the results - multi-criteria analysis
Editor : Didier GUTH - Arcadis - June 14th, 2020
1) Introduction
1.1 Objectives
In this document, we will model the same multi-beam deck using several approaches:
-
the Guyon-Massonnet method,
-
a plane grid approach,
-
a 3D grillage (modeled as a ladder beam)
-
a 3D model associating bars and shells, with two approaches.
We will compare:
-
Support reactions,
-
Efforts, moments and shear.
In addition, we will perform two transverse bending calculations to highlight the differences and limitations of the methods.
We will test the incidence of a moderate skew (70 degrees), a more consequent skew (50 degrees) and the presence of cross girders.
A table, by way of conclusion, will attempt to give the reader some clues as to the advantages and disadvantages of each of the models.
The dimensions and applied loads are plausible for a structure deemed to be made of reinforced concrete.
We insist on the fact that each work is particular and that we find ourselves, in the context of this example, in a given configuration of flexural and torsional rigidity, and that consequently the conclusions cannot be generalized as such.
1.2 Bibliography
We invite the reader to refer to the following references:
[1] - Guide technique CHAMOA P CHaîne Algorithmique Modulaire Ouvrages d’Art – Apendix http://www.setra.fr/html/logicielsOA/Ponts_Types/CHAMOA-P/chamoa-p.html
[2] - Guide pour l’utilisation des programmes de réseaux de poutres - PRP 75 - SETRA -1975
[3] - Compléments à la méthode de calcul des ponts à poutres multiples - C. Massonnet – ITBTP annals - January 1962
[4] - Le calcul des grillages de poutres et dalles orthotropes selon la méthode Guyon-MassonnetBarès - R. Barès et C. Massonnet - Dunod – 1966
[5] - Calcul des ponts à poutres multiples solidarisées par des entretoises – J. Courbon - Annales des ponts et chaussées - November-December 1941
[6] - Méthode de calcul des ponts nervurés sans entretoise intermédiaire – ITBTP annals – July-August 1970
[7] - Nouvelle formulation analytique de la flexion transversale d'une dalle orthotrope - A.L. Millan - Construction Métallique n°2 – 2004
[8] - Méthode de Guyon Massonnet Barès appliquée aux ouvrages à poutres d'inertie distincte - G. Bondonet et P. Corfdir - Revue Européenne de Génie Civil - Volume 9, n°9-10 – 2005
[9] – Calcul analytique de flexion des ponts à poutres de géométrie quelconque, calage des inerties de torsion transversale par comparaison à des calculs aux éléments finis – P. Perrin et G. Bondonet – Bulletin Ouvrages d’Art - n°71 – 2015
[10]- Emploi des éléments finis en génie civil (Tome 1) : La modélisation des ouvrages – sous la direction de Michel Prat
[11] - Contribution à l’étude des grillages de poutres – Pierre Perrin – Dir Est – sur le wiki de l’AFGC [https://wiki-gtef.frama.wiki/accueil-gtef:partie-3:exemple-c]
[12] - Flexion transversale d'un pont multipoutre – Benjamin Tritschler – Arcadis - – sur le wiki de l’AFGC [https://wiki-gtef.frama.wiki/accueil-gtef:partie-3:exemple-c]
[13] Guide pour l’évaluation structurale et la réparation des Viaducs à travées Indépendantes à Poutres Préfabriquées précontraintes par post-tension (VIPP) – CEREMA – (à paraître)
[14] Dossier PRAD 73 – SETRA
[15] Dossier VIPP 67 – SETRA
1.3 Possible complements
To complete the study, in a non-exhaustive way, in the end we could add:
-
Modeling with 3D elements (see reference [11])
-
The study of a longitudinal and/or transverse phasing, taking into account the creep shrinkage, either as at a fixed rate or by using a calculation with behavioral laws,
-
A study using an improved "Guyon Massonnet" approach
-
Tests to find the optimal width of the cross bands
-
How to take into account geometric or material non-linearities,
And extend the study to cases of structures with flexible connections.
2) Description of the structure and loads
2.1 Geometry
It includes:
-
Eleven ribs of 40 cm x 100 cm ht, spaced at 0.90 m intervals.
-
Two 25 m spans,
-
A 25 cm thick hollow-core element,
It is made of C35 concrete, E=36000 MPa, ν=0.2 and rests on simple supports.
2.1 Studied load cases
The applied loads are:
-
Self-weight:
-
A fictitious superstructure load of 3.00 kN/m² on the entire surface of the hollow-core element and 5 kN/ml on the edges at the end of the cantilever:
-
Multiple operating loads
-
A linear load of 9 kN/m in span 1, on beams 1 to 3:
-
A linear load of 9 kN/m in span 1+2, on beams 1 to 3:
-
A distributed load from the abscissa 10.00 to 11.25 m, astride beams 6 and 7
(will be used for the transverse bending study)
-
A point load on the abscissa 1.25 m from an abutment on beam n°4:
(will be used to study support reactions)
-
A linear load of 100 kN/ml at the edge of the deck:
(will be used for the transverse bending study)